Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity X as follows: [position] = [position] = $[X^{\alpha}]$; [speed] = $[X^{\beta}]$; [acceleration] = $[X^{p}]$; [liner momentum] = $[X^{q}]$; [force] = $[X^{r}]$. Then This question has multiple correct options

 $\mathbf{A} \qquad \alpha + \mathbf{p} = 2\beta$

 $\mathbf{B} \qquad \mathbf{p} + \mathbf{q} - \mathbf{r} = \mathbf{\beta}$

 $c p-q+r=\alpha$

 $\mathbf{p} + \mathbf{q} + \mathbf{r} = \mathbf{\beta}$

(a, b) Given position,
$$L = [X^{\alpha}]$$

Speed,
$$LT^{-1} = [X^{\beta}]$$

Acceleration,
$$LT^{-2} = [X^p]$$

Linear momentum,
$$MLT^{-1} = [X^q]$$

Force,
$$MLT^{-2} = [X^r]$$

$$\frac{\text{Position}}{\text{Speed}} = \text{time, } T = -\frac{[X^{\alpha}]}{[X^{\beta}]} = X^{\alpha - \beta}$$

Acceleration =
$$\frac{\text{Speed}}{\text{Time}} = \frac{X^{\beta}}{X^{\alpha-\beta}} = X^{p}$$

$$X^{\alpha-\beta+p} = X^{\beta}$$

$$\alpha + p = 2\beta$$

Hence option (a) is correct.

$$Force = \frac{linear\ momentum}{time}$$

$$[X^r] = \frac{[X^q]}{[X^{\alpha-\beta}]}$$

$$\Rightarrow$$
 r = q + β - α \Rightarrow r = q + β - $(2\beta - p)$

$$\Rightarrow r = q - \beta + p \Rightarrow p + q - r = \beta$$

Hence option (b) is correct.